Effects of polyethylene glycol attachment on physicochemical and biological stability of E. coli L-asparaginase.

نویسندگان

  • Alexandre Learth Soares
  • Gledson Manso Guimarães
  • Bronislaw Polakiewicz
  • Ronaldo Nogueira de Moraes Pitombo
  • José Abrahão-Neto
چکیده

L-asparaginase obtained from E. coli strains is an important enzyme widely used in leukemia treatment. However, hypersensitivity reactions must be considered a relevant adverse effect of asparaginase therapy. One approach to reduce the hypersensitivity reactions caused by this enzyme is to change its physicochemical and biological properties by means of polyethylene glycol (PEG) conjugation, resulting in a less immunogenic enzyme with much longer half-time of plasmatic life. This work investigated the factors that could interfere in PEG-enzyme's stability. The complexation did not affect the range of pH activity and stability was improved in acid medium remaining stable during 1 h at pH 3.5. The PEG-enzyme exhibited activity restoration capacity (32% after 60 min) when subjected to temperatures of 65 degrees C in physiological solution. The PEG-enzyme in vitro assays showed a very high stability in a human serum sample, keeping its activity practically unchanged during 40 min (strength to non-specific antibodies or proteases in serum). An increase of PEG-enzyme catalytic activity during the lyophilization was observed. The process of modification of L-asparaginase with PEG improved both physicochemical and biological stability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bioinformatic Analysis of L-Asparaginase II from Citrobacter Freundii 1101, Erwinia Chrysanthemi DSM 4610, E. coli BL21 and Klebsiella Pneumoniae ATCC 10031

Backgroung and Aims: L-Asparaginase II is a cornerstone of treatment protocols for acute lymphoblastic leukemia. Only asparaginase II obtained from E. coli K12 and Erwinia chrysanthemi have been used in human as therapeutic drug. The therapeutic effects of asparaginase II from E. coli K12 and Erwinia chrysanthemi is accompanied by side effects. It is desirable to search for other asparaginase I...

متن کامل

Effect of Conjugation of Activated Glutaraldehyde-Nanochitosan with L-Asparaginase as an Anti Cancer Enzyme on its Stability and Physicochemical Properties

Introduction: The bacterial Asparaginase is used in the treatment of asparagine-dependent tumors, particularly lymphatic sarcoma and acute lymphoblastic leukemia. However, the instability of the enzyme increases the number of injections that are accompanied by high immune responses. The aim of this study was to investigate the conjugation of L-asparaginase with nanochitosan glutaraldehyde (NCG)...

متن کامل

Soluble Expression and Purification of Q59L Mutant L-asparaginase in the Presence of Chaperones in SHuffle™ T7 strain

Background and Aims: Q59L mutant of L-asparaginase enzyme from Escherichia coli (E. coli) has been introduced with lower side effects. This version of the enzyme might have potential applications in the treatment of leukemia patients. We utilized SHuffle T7 strain of E. coli, to produce the mutant enzyme in the presence of chaperone molecules. Materials and Methods: Q59LAsp gene was cloned in...

متن کامل

Use of PEG-asparaginase in newly diagnosed adults with standard-risk acute lymphoblastic leukemia compared with E. coli-asparaginase: a retrospective single-center study

Acute lymphoblastic leukemia (ALL) is a heterogeneous disease, and the long-term survival varies with different ages. We performed a retrospective analysis of 122 newly diagnosed adults with standard-risk ALL treated with Escherichia coli asparaginase (E. coli-asparaginase, n = 50) and polyethylene glycol-conjugated asparaginase (PEG-asparaginase, n = 72). No treatment-related mortality (TRM) o...

متن کامل

Polyethylene Glycol Repairs Damaged Membrane; Biophysical Application of Artificial Planar Bilayer to Mimic Biological Membrane

Polyethylene glycol (PEG) is a hydrophilic polymer, known to be capable to fuse numerous single cells in vitro, to join the membranes of adjacent neurons and giant invertebrate axons, and to seal damaged neural membranes. The molecular mechanism of the action of PEG is still unknown. It is believed that PEG dehydrates membranes and enables their structural components to resolve and rearrange in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International journal of pharmaceutics

دوره 237 1-2  شماره 

صفحات  -

تاریخ انتشار 2002